
Introduction to Abstract Algebra

Keep in Mind. . .

The Concept of Abstraction
• Notice properties common to many objects.
• Prove facts (theorems) using just these properties.
• These theorems then hold for all objects with the common (“abstracted”) properties.

Example: every finite dimensional vector space has a basis.

Abstract algebra is axiomatic — we start with some assumptions and derive theorems by
logical reasoning (proofs).

Some Observations about Proofs

0. Definitions must be thoroughly understood.

Every definition is an “if and only if” statement, although it is common to write just “if”.

1. If the only thing you know about an object or concept is its definition, then that
definition must be used to prove any statement about that object or concept. You
have no other information!

Example

Definition An integer n is odd if n = 2m + 1 for some integer m.

Theorem The product of two odd numbers is odd.

PROOF. Let n1 and n2 be two odd numbers. We want to show that n1n2 is odd.
By definition n1 = 2m1 + 1 and n2 = 2m2 + 1 for some integers m1 and m2. Then

n1n2 = (2m1 + 1)(2m2 + 1)

= 4m1m2 + 2m1 + 2m2 + 1

= 2(2m1m2 + m1 + m2) + 1

= 2m + 1,

where m = 2m1m2 + m1 + m2 is an integer. Thus n1n2 is an odd number.

2. The statement of a theorem has a hypothesis (or hypotheses) and a conclusion.

Example

Above (using a more formal version of the theorem statement: “If n1 and n2 are
odd numbers, then n1n2 is odd”): hypotheses: n1 and n2 are odd. Conclusion:
n1n2 is odd.

Every statement in a proof must be supported either by a hypothesis or by a previously
known fact (which could be an axiom or a previous result).

3. A statement is not a theorem if even one counterexample can be found. This is the
standard way to show that a statement is not a theorem.
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Example

Statement: Every integer ending in a 6 is divisible by 3.
But 16 is a counterexample.
This statement is not a theorem.

Example

Statement: Some integers ending in a 6 are divisible by 3.
This statement is a theorem (write a proof!).

These two examples remind us about quantifiers:

4. Be very careful with quantifiers: for all, for every (∀); for some, there exists (∃).
Also watch words like only or unique. Don’t assume any hypotheses not stated. Be
precise about the use of terms.

Example

Statement: “Every number has a square root”??

Which set of numbers are we referring to? The statement is a theorem if we mean
within the set of complex numbers, but not if we mean within the set of real
numbers. As written, the statement is imprecise.

5. A theorem of the form: If hypotheses then conclusion cannot be proved by giving
an example. It must hold for all examples (exception: if there are only a finite number
of instances in which the hypotheses hold, then a proof can consist of checking every
one of these instances).

There are some standard techniques for proofs in algebra.

6. To show that there is a unique element with some property:
(a) show that there is such an element (by example), and
(b) show that if there are two such elements, then they must be equal.

Example

Theorem. For every nonzero real number r, there is a unique number s such that
rs = 1.

PROOF. (You should provide justification for each step).

Existence: Let s = 1
r . Then rs = r

(
1
r

)
= 1.

Uniqueness (without using cancellation): Suppose that s and t both have the re-
quired property, that is, rs = 1 and rt = 1. Then, multiplying the first of these
equalities on the right by t, we have:

(rs)t = t

⇐⇒ r(st) = t

⇐⇒ r(ts) = t

⇐⇒ (rt)s = t

⇐⇒ 1s = t

⇐⇒ s = t
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Sets

Fact: We must start with some undefined concepts.

Generally, set is undefined. Let us agree:

1. A set S is made up of elements. We write x ∈ S to mean that x is an element of S.

2. Exactly one set has no elements. It is the empty set, denoted ∅.
3. To describe a set S, either list the elements or give a description.

Examples

S = {0, 1, 4, 9}.
S = {x2|x is an integer, x2 < 10}.
S is the set of squares of integers, with the squares less than 10.

4. A set is well-defined, that is, for any set S, an object x is either in S or not in S.

Example

The sentence “S is some cats in St. Louis” does not define a set.
The sentence does not help us decide whether a particular St. Louis cat is in or not
in the collection.

Definition. A set B is a subset of a set A if every element of B is in A.

Notation: B ⊆ A or A ⊇ B means that B is a subset of A. B ⊂ A means that B ⊆ A,
but B 6= A (the notation A ( B is non-ambiguous).

Remark: ∅ ⊆ A and A ⊆ A.

Definition. Let A be any set. A is the improper subset of A. All other subsets of A
are proper subsets.

Standard Sets: Z = all integers, i.e., . . .− 2,−1, 0, 1, 2, . . ..
N = Z+ = all positive integers (natural numbers), i.e., 1, 2, 3, . . ..
Q = all rational numbers (those expressible as m

n , for m,n ∈ Z, n 6= 0)
Q+ = all positive rational numbers.
Q∗ = all nonzero rational numbers.
R = all real numbers.
R+ = all positive real numbers.
R∗ = all nonzero real numbers.
C = all complex numbers.
C∗ = all nonzero complex numbers.

Note that these symbols represent sets.

Be careful with set notation. Z is the set of all integers, while {Z} is a set whose single
element is the set of all integers. Similarly, ∅ is the empty set, the set with no elements,
but {∅} is a set whose single element is the empty set.

Example

Let A = {2, 3, 4} and B = {4, 5}.
Then C = {A,B} is a set with elements {2, 3, 4} and {4, 5}.
On the other hand, D = A ∪B = {2, 3, 4, 5} is a set with elements 2, 3, 4 and 5.
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