Introduction to Abstract Algebra

Keep in Mind...

The Concept of Abstraction

- Notice properties common to many objects.
- Prove facts (theorems) using just these properties.
- These theorems then hold for **all** objects with the common ("abstracted") properties. Example: every finite dimensional vector space has a basis.

Abstract algebra is **axiomatic** — we start with some assumptions and derive theorems by logical reasoning (proofs).

Some Observations about Proofs

0. **Definitions** must be thoroughly **understood**.

Every definition is an "if and only if" statement, although it is common to write just "if".

1. If the **only** thing you know about an object or concept is its definition, then that definition **must** be used to prove any statement about that object or concept. You have no other information!

Example

Definition An integer n is odd if n = 2m + 1 for some integer m.

Theorem The product of two odd numbers is odd.

PROOF. Let n_1 and n_2 be two odd numbers. We want to show that n_1n_2 is odd. By **definition** $n_1 = 2m_1 + 1$ and $n_2 = 2m_2 + 1$ for some integers m_1 and m_2 . Then

$$n_1 n_2 = (2m_1 + 1)(2m_2 + 1)$$

= $4m_1 m_2 + 2m_1 + 2m_2 + 1$
= $2(2m_1 m_2 + m_1 + m_2) + 1$
= $2m + 1$,

where $m = 2m_1m_2 + m_1 + m_2$ is an integer. Thus n_1n_2 is an odd number.

2. The statement of a theorem has a hypothesis (or hypotheses) and a conclusion.

Example

Above (using a more formal version of the theorem statement: "If n_1 and n_2 are odd numbers, then n_1n_2 is odd"): hypotheses: n_1 and n_2 are odd. Conclusion: n_1n_2 is odd.

Every statement in a proof must be supported either by a **hypothesis** or by a **previously known fact** (which could be an axiom or a previous result).

3. A statement is **not** a theorem if even one **counterexample** can be found. This is the standard way to show that a statement is not a theorem.

Example

Statement: Every integer ending in a 6 is divisible by 3. But 16 is a counterexample. This statement is **not** a theorem.

Example

Statement: Some integers ending in a 6 are divisible by 3. This statement **is** a theorem (write a proof!).

These two examples remind us about quantifiers:

4. Be very careful with quantifiers: for all, for every (∀); for some, there exists (∃). Also watch words like only or unique. Don't assume any hypotheses not stated. Be precise about the use of terms.

Example

Statement: "Every number has a square root"??

Which set of numbers are we referring to? The statement is a theorem if we mean within the set of complex numbers, but not if we mean within the set of real numbers. As written, the statement is imprecise.

5. A theorem of the form: If hypotheses then conclusion cannot be proved by giving an example. It must hold for all examples (exception: if there are only a finite number of instances in which the hypotheses hold, then a proof can consist of checking every one of these instances).

There are some standard techniques for proofs in algebra.

- 6. To show that there is a **unique** element with some property:
- (a) show that there is such an element (by example), and
- (b) show that if there are two such elements, then they must be equal.

Example

Theorem. For every nonzero real number r, there is a unique number s such that rs = 1.

PROOF. (You should provide justification for each step).

Existence: Let $s = \frac{1}{r}$. Then $rs = r(\frac{1}{r}) = 1$.

Uniqueness (without using cancellation): Suppose that s and t both have the required property, that is, rs = 1 and rt = 1. Then, multiplying the first of these equalities on the right by t, we have:

$$(rs)t = t$$
$$\iff r(st) = t$$
$$\iff r(ts) = t$$
$$\iff (rt)s = t$$
$$\iff 1s = t$$
$$\iff s = t$$

Sets

Fact: We must start with some undefined concepts.

Generally, **set** is undefined. Let us agree:

- 1. A set S is made up of elements. We write $x \in S$ to mean that x is an element of S.
- 2. Exactly one set has no elements. It is the empty set, denoted \emptyset .
- 3. To describe a set S, either list the elements or give a description.

Examples

 $S = \{0, 1, 4, 9\}.$ $S = \{x^2 | x \text{ is an integer}, x^2 < 10\}.$ S is the set of squares of integers, with the squares less than 10.

4. A set is well-defined, that is, for any set S, an object x is either in S or not in S.

Example

The sentence "S is some cats in St. Louis" does not define a set. The sentence does not help us decide whether a particular St. Louis cat is in or not in the collection.

Definition. A set B is a subset of a set A if every element of B is in A.

Notation: $B \subseteq A$ or $A \supseteq B$ means that B is a subset of A. $B \subset A$ means that $B \subseteq A$, but $B \neq A$ (the notation $A \subsetneq B$ is non-ambiguous).

Remark: $\emptyset \subseteq A$ and $A \subseteq A$.

Definition. Let A be any set. A is the **improper subset** of A. All other subsets of A are **proper subsets**.

Standard Sets:	$\mathbb{Z} = $ all integers, i.e., 2, -1, 0, 1, 2,
	$\mathbb{N} = \mathbb{Z}^+$ = all positive integers (natural numbers), i.e., 1, 2, 3,
	\mathbb{Q} = all rational numbers (those expressible as $\frac{m}{n}$, for $m, n \in \mathbb{Z}, n \neq 0$)
	\mathbb{Q}^+ = all positive rational numbers.
	$\mathbb{Q}^* = $ all nonzero rational numbers.
	\mathbb{R} = all real numbers.
	\mathbb{R}^+ = all positive real numbers.
	$\mathbb{R}^* = $ all nonzero real numbers.
	\mathbb{C} = all complex numbers.
	$\mathbb{C}^* = $ all nonzero complex numbers.

Note that these symbols represent sets.

Be careful with set notation. \mathbb{Z} is the set of all integers, while $\{\mathbb{Z}\}$ is a set whose single element is the set of all integers. Similarly, \emptyset is the empty set, the set with no elements, but $\{\emptyset\}$ is a set whose single element is the empty set.

Example

Let $A = \{2, 3, 4\}$ and $B = \{4, 5\}$. Then $C = \{A, B\}$ is a set with elements $\{2, 3, 4\}$ and $\{4, 5\}$. On the other hand, $D = A \cup B = \{2, 3, 4, 5\}$ is a set with elements 2, 3, 4 and 5.