MT-A141 Precalculus

Group: _____

Present:

Graphing calculator warm-up:

1. With no functions entered or selected in the y = window, select ZStandard from the Zoom menu (for a TI calculator).

What part of the cartesian plane is represented?

Viewing window: $[__,_] \times [__,_]$ Can you move the cursor (using the arrow buttons) to the point (2,3)? Write a sentence to explain!

How much gap is there between adjacent pixels?

 $\Delta x =$ _____, $\Delta y =$ _____

Can you think of a time when you'd like to have Δx equal to Δy ?

Select ZSquare from the Zoom menu. Now:

Viewing window: $[__,_] \times [__,_]$

 $\Delta x = \underline{\qquad}, \Delta y = \underline{\qquad}$

Write a sentence to explain what selecting ZSquare has done:

Next select ZDec from the Zoom menu. Then:

Viewing window: $[__,_] \times [__,_]$

Can you move the cursor (using the arrow buttons) to the point (2,3)? Write a sentence to explain!

2. In the y = window, enter $Y_1 = 144 - x^2$ and graph using ZStandard. What do you see?

Now trace and use the y-coordinates of points on the function to help you find a viewing window which gives a "complete graph" for this function (make sure your viewing window shows all the interesting features of the graph)

Viewing window: $[___,__] \times [___,__]$

3. Find a viewing window which makes the graph of $y = \sqrt{144 - x^2}$ look like a semicircle (which it is!).

Viewing window: $[__,_] \times [__,_]$

(Hint: find a viewing window which shows a complete graph first, and then use ZSquare)