MT-A141 Precalculus

Group:	Present:	
1. Graph $Y_1 = x + 1$ an	d $Y_2 = \sqrt{x}$.	
Domain of Y_1 :	; Range of Y_1 :	
Domain of Y_2 :	; Range of Y_2 :	
Next graph $Y_3 = Y_1$ -	$+Y_2 = (x+1) + \sqrt{x}$	
Domain of Y_3 :	\ldots ; Range of Y_3 :	
Graph $Y_3 = Y_1 - Y_2$	$= (x+1) - \sqrt{x}$	
Domain of Y_3 :	\ldots ; Range of Y_3 :	
Graph $Y_3 = Y_1 Y_2 = ($	$(x+1)\sqrt{x}$	
Domain of Y_3 :	; Range of Y_3 :	
Graph $Y_3 = \frac{Y_1}{Y_2} = \frac{(x+y_1)}{\sqrt{y_2}}$	$\frac{(1)}{\overline{x}}$	
Domain of Y_3 :	; Range of Y_3 :	
Graph $Y_3 = Y_1(Y_2) =$	$Y_1(\sqrt{x})$	
Domain of Y_3 :	\ldots ; Range of Y_3 :	
Graph $Y_4 = Y_2(Y_1) =$	$Y_2(x+1)$	
Domain of Y_4 :	; Range of Y_4 :	
(Only the TI-82 and On other calculators	TI-83 handle the compositions correctly as X you need to key in the formula in terms of x)	$Y_1(Y_2)$ and $Y_2(Y_1)$.

2. Parametric equations. With your grapher in PARametric mode, enter $X_{1T} = T^3 - T$ and $Y_{1T} = 1 - T^2$. In WINDOW, enter TMIN = -1, TMAX = 1 and TSTEP = 0.05. Use the ZDECIMAL viewing window. Then adjust the window settings (XMIN, XMAX, YMIN, YMAX only) to get a good graph. Trace to find the coordinates of the points on the relation when:

 $\begin{array}{l} t = -1, (x, y) = \underline{\qquad}, t = -\frac{1}{2}, (x, y) = \underline{\qquad}, \\ t = 0, (x, y) = \underline{\qquad}, t = \frac{1}{2}, (x, y) = \underline{\qquad}, \\ t = 1, (x, y) = \underline{\qquad}. \end{array}$

Change TMAX to 3. How has the graph changed?

t = 2, (x, y) =_____, t = 3, (x, y) =_____ Experiment with other values of TMIN and TMAX.

What TMIN and TMAX do you get with ZSTANDARD?

 $T \in [___,__]$