Group:

Present:

1. In this exercise we graph a relation and it's inverse First graph the relation defined parametrically by $x = t, y = t^2 - 4$ for $-3 \le t \le 1$. Use the viewing window $[-10, 10] \times [-10, 10]$, with $t \in [-3, 1]$ and TSTEP = 0.1. Trace the curve to see some points in the relation.

Now give the parametric equations for the inverse relation:

x =_____, y =_____, $-3 \le t \le 1$

Now graph the inverse (use X_{2T} and Y_{2T} so you can see both relations graphed at once). Trace this curve too. What is the geometric relationship between the two graphs?

2. Consider the relation $R: y = x^2 - x$. This relation is actually a function; is the inverse relation of R a function?

Now, let's graph the inverse relation.

The inverse relation R^{-1} has equation x =_____.

Solve this equation for y:

y = _____

Is this a function?

How many functions should we graph to get a graph of R^{-1} ?

Graph $R: Y_1 = x^2 - x$ and

 $Y_2 = _$ $R^{-1}:$ $Y_3 = _$

(Use the ZDECIMAL window - use FUNCTION mode!)