Present: Group: 1. Set your grapher to PARAMETRIC mode. Set $T \in [0, 2\pi]$, TSTEP = $\frac{\pi}{100}$, viewing window = $[-1.5, 1.5] \times [-1, 1], X_{1T} = \cos(T)$ and $Y_{1T} = \sin(T)$. Graph. Trace. What do you see? (Use ZSQUARE to get a better picture) Use function evaluation (2nd CALC 1:VALUE) to find coordinates for: $T = \frac{\pi}{6} : x =$ _____, y =_____ Thus $\cos(\underline{}) = \underline{}$ and $\sin(\underline{}) = \underline{}$ $T = \frac{2\pi}{3} : x = _, y = _$ Thus $\cos(\underline{}) = \underline{}$ and $\sin(\underline{}) = \underline{}$ $T = \frac{7\pi}{3}$: What happened? Why? Change window settings to find $\cos(\frac{7\pi}{3})$ and $\sin(\frac{7\pi}{3})$ Thus $\cos(\frac{7\pi}{3}) =$ _____ and $\sin(\frac{7\pi}{3}) =$ _____ 2. Write the Fundamental Trigonometric Identity: Suppose $\cos(t) = \frac{5}{13}$ and $\tan(t) < 0$. In which quadrant does t lie? Quadrant _____ Find $\sin(t) =$ Find $\tan(t) = _$ and $\sec(t) = _$ Find $\cot(t) =$ _____ and $\csc(t) =$ _____ 3. Graph the following, in PARAMETRIC and SIMULTANEOUS mode. Set $T \in [0, 2\pi]$, viewing window = $[-2, 2\pi, 1] \times [-2.5, 2.5, 1]$. Then enter $X_{1T} = -1 + \cos(t), Y_{1T} =$ $\sin(t)$ (a unit circle shifted one unit left) and $X_{2T} = t, Y_{2T} = \sin(t)$ $(y = \sin(x))$ graphed parametrically). Use ZSQUARE to get a better picture. What do you see? (TRACE, and use up and down arrows to jump between the two curves) For which x values is $\sin(x) = 0$? For which x values is $\sin(x) = -1$?

For which x values is sin(x) = 1?

4. Suppose you are standing on level ground 250 feet away from a tall building. If the top of the building is at an angle of elevation 65° from your current position, how tall is the building?

(Draw a picture which clearly shows all the important information)