Gro	up: Present:
1.	"Horizontal shift" identities. Graph $y = \sin x$ and $y = \cos x$ on the same axes. Predict a shift for $y = \cos x$ to superimpose it on the graph of $y = \sin x$.
	Shift =
	Formula of shifted function: $y = \cos(x$).
	Now graph your new function. Does it work?
	Conclusion: $\sin x = \cos(x_{\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$
	Likewise $y = \sin x$ can be shifted to superimpose it on $y = \cos x$.
	Formula of shifted function: $y = \sin(x_{})$. Graph it to check!
	Conclusion: $\cos x = \sin(x $)
2.	Let's solve a trigonometric equation three different ways. Solve: $2\cos(2x) = 1$ for $0 \le x \le \frac{\pi}{2}$. 1. Algebraically (get exact solution):
	x = 2. Graphically (get approximate solution): $x \approx $
	3. By calculator (use \cos^{-1}):
	$x \approx$
3.	Find the equation of a cosine curve $f(t) = a \cos(bt + c) + d$ with period 24, minimum value 48, maximum value 72, and maximum value occuring at $t = 15$. Find d:
	Find <i>a</i> :

Find b:

Find c:

Equation is: $f(t) = _ cos(_ t _) + _$ What is f(0)? $f(0) = _$

Suppose now that this function represents average temperature t hours after midnight at a certain time of the year. At what time(s) of the day is the average temperature equal to 66° ?

Times: