Gro	up: Present:
1.	Predict the graph of $y = -2\sin x$
	Graph $Y_1 = \sin(x), Y_2 = -2\sin(x)$ for $x \in [-2\pi, 2\pi]$.
	Conclusion: $f(x) = a \sin x$ and $g(x) = a \cos x$ (where a is a constant) have an equal to
	What is the transformation?
2.	Predict the graphs of $y = \cos x + 1$ and $y = -2\cos x + 1$
	Graph $Y_1 = \cos(x), Y_2 = \cos(x) + 1$ and $Y_3 = -2\cos(x) + 1$ for $x \in [-2\pi, 2\pi]$.
	Conclusion: $f(x) = a \sin x + d$ and $g(x) = a \cos x + d$ (where a and d are constants) oscillate about average value
	What is the transformation?
3.	Graph $Y_1 = \sin(x), Y_2 = \sin(2x)$ for $x \in [-2\pi, 2\pi]$.
	What is the transformation?
	$y = \sin(2x)$ has <u>p</u> = <u>_</u> = $\frac{2\pi}{}$
	Predict the graph of $y = 4\sin(3x)$
	It has \underline{am} equal to and \underline{p} =
	Conclusion: $f(x) = a \sin(bx)$ and $g(x) = a \cos(bx)$ (where a, b are constants) have
	amplitude equal to and period equal to
4.	Predict the graph of $y = \sin(x - \frac{\pi}{2})$
	Graph $Y_1 = \sin(x), Y_2 = \sin(x - \frac{\pi}{2})$ for $x \in [-2\pi, 2\pi]$.
	$\frac{\pi}{2}$ is called the p shift.
	What is the transformation?
	Predict the graph of $y = \cos(2x - \frac{\pi}{2})$
	Hint: write $\cos(2x - \frac{\pi}{2})$ as $\cos(2(x - \underline{\qquad}))$
	period =; phase shift =
	Conclusion: $f(x) = a \sin(bx + c)$ and $g(x) = a \cos(bx + c)$ (where a, b, c are constants) have
	$\underline{\mathbf{p}}$ shift =

5. Predict the graph of $y = -2\sin(3x + \pi) - 1$ Amplitude = ____; Period = ____; Phase shift = ____; Vertical shift = ____; Graph on the interval $[-2\pi, 2\pi]$ to check!