Gro	ıp: Present:
1.	Solve $cos(x) = -0.7$. Period of cosine is:
	Find all solutions in the interval $[0, 2\pi)$ (within 0.01):
	Thus the complete set of solutions is:
2.	Solve the equation $\sin(\theta) = \tan(\theta)$ algebraically. First write $\tan(\theta)$ as
	So solve $\sin(\theta) = \underline{\hspace{1cm}}$ (Tempted to cancel next? Don't! You'll often "lose" solutions by canceling — when the canceled term is equal to zero)
	Rewrite as: $\sin(\theta) - \underline{} = 0$.
	Next factor: $\underline{} = 0.$
	Thus either $\underline{\hspace{1cm}} = 0$ or $\underline{\hspace{1cm}} = 0$,
	that is, either $\underline{} = 0$ or $\underline{} = \underline{}$.
	Therefore $\theta = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ or $\theta = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$.
3.	Solve $2\cos(\alpha) + \tan(\alpha) = \sec(\alpha)$ algebraically. Period =
	(Graph first to see the number of solutions in one period)
	Convert equation to sines and cosines:
	Clear denominators:
	Convert to only sines or cosines, using $\sin^2(\alpha) + \cos^2(\alpha) = 1$:
	, that is,
	Factor the quadratic:
	Thus either = 0 or = 0,
	that is, either $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
	Hence $\alpha =$
	Check $tan(\alpha)$ and $sec(\alpha)$ for each α to see if we need to reject any of these values.
	Reject because
	Final solution: $\alpha =$
4.	Solve $2\cos^2(x) = \cot(x)$ graphically. Period = $Y_1 = \underline{\qquad} \text{ (and } Y_2 = \underline{\qquad} \text{)}.$
	x =

Graphically: $x = \underline{\hspace{1cm}}$.

Algebraically: Bring all terms to one side:

 $\underline{\hspace{1cm}} = 0.$

Factor: $\underline{\hspace{1cm}} = 0.$

Thus either $\underline{\hspace{1cm}} = 0$ or $\underline{\hspace{1cm}} = 0$,

that is, either _____ = ____ or ___ = ____.

Hence $2x = \underline{\hspace{1cm}}$,

and so x =_____.

6. Solve $2\cos^{3}(t) + \cos^{2}(t) - 2\cos(t) - 1 = 0$ algebraically.

Factor (first stage): $\cos^2(t)(\underline{\hspace{1cm}}) - (\underline{\hspace{1cm}}) = 0$

Factor (second stage): $(\underline{\hspace{1cm}})(\underline{\hspace{1cm}}) = 0$

Factor (third stage): $(\underline{})(\underline{})(\underline{})(\underline{})(\underline{})$

Hence $\underline{\hspace{1cm}} = 0 \text{ or } \underline{\hspace{1cm}} = 0,$

so $\cos(t) =$ _____ or $\cos(t) =$ ____ or $\cos(t) =$ ____.

Hence $t = \underline{\hspace{1cm}}$.

Now graph $y = 2\cos^3(t) + \cos^2(t) - 2\cos(t) - 1$ and hence solve the inequality

 $2\cos^3(t) + \cos^2(t) - 2\cos(t) - 1 > 0$ for $t \in [0, 2\pi]$.

 $t \in _$

7. Suppose that the temperature in degrees Fahrenheit at time t hours after midnight (at a certain time of the year) is modeled by the function $f(t) = 12\cos(\frac{\pi}{12}t - \frac{5\pi}{4}) + 60$.

Graph y = f(t) in the window $[0, 24, 1] \times [40, 80, 5]$.

Solve both graphically and algebraically: for what hours of the day is the temperature at least 63°F?