Next, write $(x - y)^2$ in terms of t:_____

Equate: _____ =

Is this the equation of a curve of the type you stated?

3. What shape is the curve C with parametric equations $x = 4\cos(t), y = 3\sin(t)$ for $t \in [0, 2\pi, \frac{\pi}{24}]$?

(Be sure to use ZSQUARE)

Now prove your claim by eliminating t:

Equation: _____

4. Find the height function for a ball thrown upwards at 24 feet per second from the top of a 20 foot tower, using the data:

$v_0 = $	ft/sec $s_0 = $	ft		
Thus the height after t seconds	ht of the ball is $s(t) = _$			feet
Graph height	vs. time: $X_{1T} = T, Y_{1T} = T$	s(T) =		
v 0 1	h to find: The maximum h	eight the ball attains	s =	feet
The ball strike	es the ground after $t = $	second	ds; and	
Total distance feet.	ball travels =	+	=	

5. The "Green Monster" at Fenway Park in Boston is a wall 37 feet high and 379 feet from home plate in one direction. If a ball is hit from 3 feet above home plate in that direction, at 123 feet per second at angle of elevation 32°, is it a home run? (That is, does it clear the Green Monster?) Let's investigate:

Initial velocity vector: $\mathbf{v}_0 = v_{0x}\mathbf{i} + v_{0y}\mathbf{j} =$ ______ Initial height $s_0 =$ ______ feet.

Parametric equations for position of ball:

 $x = \underline{\qquad}, y = \underline{\qquad} (\star)$

Set your graphing calculator as follows: Mode: PARAMETRIC and SIMULTANE-OUS, Viewing window: $T \in [0, 5, 0.1], X \in [0, 400, 50], Y \in [-30, 100, 10].$

Enter the path of the ball in X_{1T}, Y_{1T} . Graph the Green Monster as $X_{2T} = 379, Y_{2T} = 37T(T \le 1)$. Use ZSQUARE.

When, and at what height, does the ball hit the wall? (You will have to zoom in, and reduce TSTEP to solve this; alternatively, use the TABLE feature)

Ball hits wall after t =_____ seconds, at height _____ feet.

Suppose now that the wind is "blowing out", for example, there is a 13.2 ft/sec (= 9 mph) wind in the direction the ball is going, which catches the ball after 1.5 seconds of flight. The effect of this is to add $13.2(T - 1.5)(T \ge 1.5)$ to the X_{1T} equation. Is the hit a home run?

Go back to equation (\star) . Can you find an angle of elevation for the hit that produces a home run (without any wind)?

 $\theta =$ ____.