MT-A315 Introduction to Linear Algebra

Group: _____ Present: _____

1. Compute the projection b_0 of the vector $v = [-2, 3, 1]^t$ onto the vector $u = [1, -3, 1]^t$. Also compute the complement b_1 of v with respect to u. The inner product is the usual dot product.

$$b_0 = \frac{v \cdot u}{u \cdot u} u =$$
$$b_1 =$$

2. We want to figure out a formula for the projection of a general vector $x = [x_1, x_2, x_3]^t$ onto the plane with equation 2x - y + 4z = 0.

First step: Find a basis $\{A_1, A_2\}$ for the null space of the system (of one equation in three unknowns) 2x - y + 4z = 0 (that is, a basis for the plane).

Second step: apply the Gram-Schmidt process to find an orthogonal basis $\{Q_1, Q_2\}$ for the plane.

Find the projection of $x = [x_1, x_2, x_3]^t$ onto the plane using your orthogonal basis and the Fourier Theorem.

Use your formula to find the projection of $[7, 5, -3]^t$ onto the plane 2x - y + 4z = 0.