Group: _____ Present: _____

1. Use Cramer's Rule to solve
$$AX = B$$
, where $A = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$,
 $B = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$
First, $|A| =$

Then:

2. Find the adjoint of
$$A = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$
. First, find the matrix of cofactors

$$\begin{pmatrix} C_{11} = | & | & C_{12} = | & | & C_{13} = | & | \\ C_{21} = | & | & C_{22} = | & | & C_{23} = | & | \\ C_{31} = | & | & C_{32} = | & | & C_{33} = | & | \end{pmatrix} = \begin{pmatrix} & \end{pmatrix}$$
Hence $\operatorname{adj}(A) = \begin{pmatrix} & \\ & \end{pmatrix}$

3. Use the result of # 2 to find A^{-1} : det(A) =

Hence
$$A^{-1} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$