# Adaptive Quadrature# # # We test some of our numerical quadrature rules. We first define some# data points.> restart; Digits := 10; with(student): Digits := 10> f := sin(1/x);> plot(f,x=.1..10); f := sin(1/x)# Apply the Composite Simpson's rule with a number of subintervals and# compare with the "exact" value Maple computes.> int(f,x=.1..10); 2.735148231> evalf(simpson(f,x=.1..10,2));> evalf(simpson(f,x=.1..10,4));> evalf(simpson(f,x=.1..10,8));> evalf(simpson(f,x=.1..10,16));> evalf(simpson(f,x=.1..10,32));> evalf(simpson(f,x=.1..10,64));> evalf(simpson(f,x=.1..10,128));> evalf(simpson(f,x=.1..10,256)); .5654965345 1.644977754 2.399717067 2.806832245 2.789905488 2.625176290 2.684313127 2.736193244>