Vertices and Brauer characters of solvable groups

James Cossey

Abstract

Let φ be an irreducible Brauer character of a *p*-solvable group *G*, and assume that there exists a subgroup *U* of *G* and an irreducible Brauer character α of *U* such that $\alpha^G = \varphi$ and α has *p'*-degree. A vertex *Q* of φ is defined to be any Sylow *p*-subgroup of *U*. It is known that vertices always exist in this case and that the set of vertices of any Brauer character φ forms a conjugacy class of subgroups of *G*. In other words, the vertex is independent of the particular pair (U, α) chosen. In this paper we extend the notion of a vertex to the lifts of φ , which are the ordinary irreducible characters of *G* such that $\chi^o = \varphi$. We show if *G* has odd order, then this more general notion of a vertex also has the property that the vertices of a lift form a single conjugacy class. We also discuss a counterexample that shows that the assumption that *G* has odd order is necessary.

University of Arizona cossey@math.arizona.edu