The intersection map of subgroups and certain classes of finite groups

Matthew Ragland

Abstract

 \mathcal{T} -groups are those groups G in which normality is a transitive relation, that is, those groups G for which $H \leq K \leq G$ always implies $H \leq G$. To generalize, one considers \mathcal{PT} -groups and \mathcal{PST} -groups. We call a subgroup H of a group G permutable (Sylow-permutable) in G provided HK = KH for each subgroup (Sylow subgroup) K of G. That normal subgroups are permutable (Sylow-permutable) is clear from the definition of normality. So, the class of groups in which permutability (Sylow-permutability) is a transitive relation, the so-called \mathcal{PT} -groups (\mathcal{PST} -groups), is a natural way to generalize the class of \mathcal{T} -groups. To start the talk, a brief overview of some known results concerning \mathcal{T} -groups and their generalizations will be given. The remainder of the talk will concern some recently established characterizations of \mathcal{T} -groups and their generalizations in connection with the intersection map of subgroups. Consider the following definition. $H \leq G$ is said to be normal sensitive if the intersection map $N \to H \cap N$ sends the lattice of normal subgroups of G onto the lattice of normal subgroups of H. A seemingly forgotten theorem of S. Bauman states the following:

Theorem. Let G be a finite group. Every subgroup $H \leq G$ is normal sensitive if and only if G is a solvable \mathcal{T} -group.

Does this result extend nicely to \mathcal{PT} -groups as well as \mathcal{PST} -groups? Also, are there local characterizations of \mathcal{T} -groups, \mathcal{PT} -groups, and \mathcal{PST} -groups in terms of the intersection map of subgroups? We will answer these questions among others. This is joint work with Jim Beidleman.

Auburn University Montgomery mragland@mail.aum.edu